European Network For Smoking Prevention - ENSP

Second-Hand Smoke (SHS) Markers

Review of methods for monitoring exposure levels

WITH THE SUPPORT OF THE EUROPEAN COMMISSION
SECOND-HAND SMOKE (SHS) MARKERS: REVIEW OF METHODS FOR MONITORING EXPOSURE LEVELS

Giuseppe Gorini *, Antonio Gasparrini *, Maria Cristina Fondelli *, and Giovanni Invernizzi §

* Environmental and Occupational Epidemiology Unit - Centre for Study and Prevention of Cancer (CSPO) - Tuscan Cancer Institute - Florence, Italy

§ Tobacco Control Unit – National Cancer Institute – SIMG Italian College GPs - Milan, Italy
1. Introduction

1.1 Health effects of SHS
1.2 SHS exposure
1.3 Physical and chemical properties
1.4 Measuring exposure
1.5 Aim of the study

2. Questionnaires

3. Environmental markers

3.1 Gas-phase markers
 3.1.1 Nicotine in air
 3.1.2 3-ethenylpyridine
 3.1.4 Myosmine
 3.1.5 Carbon monoxide (CO)
 3.1.6 Volatile Organic Compounds (VOCs)

3.2 Solid-phase markers
 3.2.1 Scopoletin
 3.2.2 Solanesol-PM
 3.2.3 Particulate matter (PM)

4. Biomarkers

4.1 Non carcinogenic biomarkers
 4.1.1 Cotinine
 4.1.2 Nicotine and cotinine in hair
 4.1.3 Carbon monoxide and carboxyhemoglobin
 4.1.4 Thiocyanate

4.2 Carcinogenic biomarkers
 4.2.1 Polycyclic aromatic hydrocarbons (PAH)
 4.2.2 Aromatic amines
 4.2.3 N-nitrosamines
 4.2.4 Benzene
 4.2.5 Others

5. Conclusion

Tables

References
1. INTRODUCTION

1.1 Health effects of SHS

Indoor tobacco smoke or second-hand smoke (SHS) has been a growing concern in public health policies since the early 1980s. Authoritative reviews over the past two decades have presented scientific evidence linking SHS exposure to a number of adverse health outcomes. Two early reports noted several adverse effects: the first (U.S. DHEW, 1979) described respiratory outcomes in children and adults, as well as some acute cardiovascular effects associated with involuntary exposure to tobacco smoke. The second (U.S. DHHS, 1982), which focused on the carcinogenic effects of active smoking, raised the concern that involuntary smoking may cause lung cancer. The extensive series of epidemiological investigations following the publication of those reports provided compelling evidence of a causal relationship. Subsequently three important reviews (U.S. DHHS, 1986; NRC, 1986; U.S. EPA, 1992) concluded that SHS exposure causes lung cancer and is associated with lower respiratory tract illnesses in young children, as well as with other adverse respiratory affects.

Evidence on overall SHS-related effects has expanded considerably since those publications, and a comprehensive review (NCI, 1999), recently updated (Cal-EPA, 2005), resumed the last results. Recently, involuntary smoking has been certified as a human carcinogen by the International Agency for Research on Cancer (IARC, 2002). These findings are summarized in Table 1. SHS exposure is causally associated with a number of health effects, including effects on infants and children. SHS has a number of serious impacts on children’s health, including sudden infant death syndrome (SIDS), exacerbation of asthma, increased respiratory tract infections, increased middle ear infections, and also causes developmental
toxicity resulting in low birth weight, impaired lung function growth, and other developmental impacts. Effects for which there is sufficient evidence of a causal relationship are fatal outcomes, such as sudden infant death syndrome and heart disease mortality, cancers of the lung and other organs, as well as serious chronic diseases such as childhood asthma. There are, in addition, effects for which evidence suggests an association, but further research is required to confirm this. These include spontaneous abortion, cervical cancer, decreased female fertility, and chronic respiratory symptoms in adults. Finally, on the basis of current evidence it is not possible to judge the impact of SHS on a number of endpoints, including congenital malformations, male reproductive effects and rare childhood cancers.

1.2 SHS exposure

Because the various health endpoints reviewed above may be the result of either acute or chronic exposure, both present and past patterns of exposure are of interest and should be taken into account. Measuring the prevalence of SHS exposure should be considered representative only of the general time periods and the specific populations covered by the studies. Smoking prevalence, smoking behaviours and other factors contributing to exposure to SHS have continued to change, as smoking customs have changed worldwide, with a number of important changes occurring within the past few years. Thus, it is expected that the number of individuals exposed to SHS and the patterns of exposure have also changed over time (NCI, 1999).

Although overall trends in smoking prevalence and other factors suggest that SHS exposure is decreasing in industrialized countries, this may not be true for all population sub-groups and the rate of decline may differ among different groups. Patterns of cigarette smoking in several countries depending on sex, race, educational, and socio-economic groups have
shifted over the years (U.S. DHHS, 1989; Fiore et al, 1989), with differential impacts on SHS exposure of non-smokers. Because of the multiple sources of SHS exposure and the different characteristics of population sub-groups, overall personal exposure, and consequently the related health effects, are difficult to estimate. Therefore, many studies have focused on specific settings and specific sub-populations, so any generalization about the results of these studies should be viewed with caution.

Exposure assessment studies have been performed in many countries, especially in occupational settings. However, studies about the health risks of SHS are difficult to carry out, because of the long-term exposure that many related diseases are associated with, and the misclassification and confounding factors encountered in tracing exposure over a large period of time.

Accurate and precise exposure assessment is crucial, since the health effects of SHS are likely to be relatively small in magnitude. Appropriate exposure assessment is also needed to infer causality and for risk assessment. In addition, exposure assessment is obviously necessary to develop preventive strategies (Jaakkola and Jaakkola, 1997).

1.3 Physical and chemical properties

SHS is a complex mixture of thousands of gases and particulate matter emitted by the combustion of tobacco products and from smoke exhaled by the smokers (NRC, 1986). Tobacco smoke contains over 4,500 compounds found both in vapour and particle phases. These compounds include over 50 chemicals recognized as known and probable human carcinogens, other animal carcinogens and many toxic and irritant agents (U.S. EPA, 1992).

Cigarette smoke is constituted by two main components, mainstream and side-stream smoke. Mainstream smoke is material that is drawn through the
mouthpiece of a burning cigarette, and contributes to nearly all of the vapour-phase constituents and over half of the solid-phase compounds. Side-stream smoke is material that is emitted from a burning cigarette between puffs. SHS is a combination of mainstream smoke exhaled by smokers, side-stream smoke, and compounds that diffuse through the cigarette paper (NCI, 1999).

Mainstream and side-stream smoke are qualitatively similar in chemical composition, but the quantities of constituents are different, due to differences in the heat of combustion, tobacco content, additives present, and the type of filter material used. The cigarette burns at a higher temperature during inhalation, leading to more complete combustion in mainstream smoke. Thus, side-stream smoke contains considerably higher concentrations of many carcinogenic and toxic substances.

1.4 Measuring exposure

Since environmental tobacco smoke is a combination of gases and particulate matter, SHS exposure is in reality composed of numerous concentration-time curves of different compounds. Relatively little is known about the importance of individual constituents in causing adverse health effects, and interactions between different compounds may also play an important role. Therefore, assessment of exposure to the entire SHS mixture is relevant.

The first step in exposure assessment is to identify an indicator (or a marker) of SHS, which can be measured and represents the magnitude, duration and frequency of SHS exposure (U.S. EPA, 1992). It is more feasible to measure one indicator compound than several or all compounds. Furthermore, by selecting a good indicator, it is possible to assess overall exposure to the complex mixture. Ideally, an indicator of SHS should vary
with the source strength, should be easily and accurately measured at an affordable cost, and should be representative of SHS as a whole (NRC, 1986).

In order to provide a quantitative assessment of SHS exposure, it is important to estimate the magnitude of pollutant concentration and the duration of exposure in the different microenvironments. Moreover, it is essential to define the time-pattern that characterizes the exposure over time experienced by an individual through time and space. Studies focussing on health-related effects of SHS exposure should also take into account the latency period from exposure to manifestation of the effects, time-profile of exposure as well as individual characteristics.

Exposure assessment can be carried out prospectively or retrospectively, with important implications for validity issues. Prospective assessment takes place before the manifestation of the health outcome. This is usually preferable, since potential misclassification of exposure by prospective assessment is likely to be non-differential rather than differential. Unfortunately, prospective assessment is often unfeasible, especially for diseases with a long latency period. Retrospective exposure assessment takes place after the manifestation of the health outcome. This type of assessment is more likely to present problems regarding the validity and precision of exposure estimates. Differential misclassification is the major validity concern. Recall bias may be a problem in retrospective assessment: diseased subjects (or their surrogates) may be more prone to recall exposure than non-diseased ones (Jaakkola and Jaakkola, 1997).

Although the measure of nicotine in air and cotinine in biological samples has often been presented as a comparison in many environmental and personal exposure assessment studies, there is no method or marker that matches the criteria of a gold standard, for sensibility, specificity, validity
and reliability. Therefore, validation is based on comparing results obtained with one method to those obtained with other "non-ideal" methods.

The majority of markers used in SHS exposure assessment is borrowed from previous studies on active smoke. The amount of exposure experienced in this new context and, consequently, the quantification of the related risk is dramatically lower. So, the use of excellent markers for measuring active smoke could face serious problems with regard to limits of detection, sensitivity and specificity when used for the purpose of measuring SHS.

1.5 Aim of the study

The aim of the study is to review the SHS markers in order to better understand the available methods for measuring SHS exposure, and to choose which marker (or which combination of markers) is the most suitable for monitoring SHS exposure in different settings.

The aim of this report is, therefore, to discuss the specific characteristics of different methods to measure the presence of SHS and to compare their practicability, user-friendly characteristics, rapidity of response, reproducibility of results, capacity to impact with people’s understanding and economic burden.

Articles about SHS markers were found in Pubmed, using the following search terms, in different combinations: “marker”, “biomarker”, “environmental tobacco smoke”, “second-hand smoke”, “exposure assessment”. Specific terms were added for specific markers, and further indications were provided by references of topic papers. The review was updated to July 2005.
2. Questionnaires

Questionnaires are the most frequently used method to assess exposure to SHS in both retrospective and prospective studies of acute and chronic effects. They are the least expensive method to obtain SHS exposure information for large populations, because it is not always feasible to collect and analyse a sufficiently large number of subjects to derive an objective index of exposure on the basis of environmental or biological markers.

In any case, memory-based proxy reports may be questioned because of limitations in the reporter’s ability to estimate accurately the duration, proximity or frequency of exposure, and to accurately report potentially important physical characteristics of the exposure setting, such as air ventilation or air conditioning (Matt et al, 1999). Misclassification errors may arise due to the respondents’ lack of knowledge, biased recall, memory failure and intentional alteration (Chen et al, 2002). Nevertheless, memory-based reports of SHS exposure may frequently be the only available and affordable source of information about SHS exposure for epidemiological research and clinical practice.

There are many methods to test the reliability of questionnaire responses on SHS exposure: some studies employing a “test-retest” design, with more interviews to the same subjects at different times (Pron et al, 1988; Coultas et al, 1990). Conformity of responses was generally good, but information provided by the subjects on the amounts smoked (i.e. number of cigarettes smoked or hours spent smoking per day) was found to be less reliable.

A number of studies have examined the quality of information provided by surrogate respondents (Sandler and Shore, 1986; McLaughlin et al, 1987). Use of surrogate respondents occurs frequently in studies of SHS exposure.
Studies examining the effects of exposure to spousal or household smoking often ask subjects to report on the smoking habits of members of their households. In retrospective studies of adult health risks from exposures occurring early in life, subjects who are now adults are questioned concerning parental smoking habits. In summary, the results of these studies indicate that information on childhood exposure to SHS provided by individuals who are now adults is of good quality, particularly with regard to qualitative information. Similarly, qualitative information on spousal smoking is of good quality. However, in both cases, quantitative information about the number of years of smoking, the years of beginning or the number of cigarettes smoked per day is sometimes less reliable.

Nevertheless, the most accurate way to assess the validity of self-reported exposure to SHS is biochemical verification using a highly sensitive method. Cotinine, the major metabolite of nicotine, has been considered the “gold standard” for assessing questionnaires’ reliability (Chen et al., 2002). Memory-based recall normally covers the previous 48 hours and the previous week. The 48-hour time frame is particularly appropriate to validate against urine cotinine measures because of the metabolite’s half-life (40–60 hours). Although biochemical verification provides empirical support for the validity of short-term exposure, reflecting recent exposure to tobacco smoke for non-smokers, it does not reflect the validity of longer-term exposure (Matt et al., 1999).

In many studies of active smokers there was a high correspondence between self-reported tobacco use and amount assessed by cotinine (Post et al., 2005; Vartiainen et al., 2002; Eisner et al., 2001). Indeed, the correspondence was higher for self-reported non-users than for users. Overall, the correlation between the biological marker and the reported patterns of use (frequency, recentness and intensity) was very good. A considerable discrepancy was found among subjects reporting non-daily
tobacco use: half of the weekly users, for example, were classified as non-users by the biological test. The discrepancy is probably explained by the very unstable patterns of tobacco use in these subjects, for which recent consumption does not imply intensive or regular use.

These findings could explain the low correlation between self-reported consumption and biomarker levels found in several studies of SHS exposure (Chen et al., 2002; Hecht, 1999; Emmons et al., 1996; O’Connor et al., 1995; Delfino et al., 1993; Coultas et al., 1990), with large individual variability and short half-life of biomarkers such as cotinine. Biomarker studies have shown that a proportion of subjects reporting no SHS exposure have measurable biomarker concentrations, indicating that subjects either forgot or were not aware of their SHS exposure. Indeed, in many cases it is impossible to distinguish non-exposed from SHS-exposed subjects (Kemmeren et al., 1994). However, other authors reported a good correlation and a clear dose-response relationship between the two measures (Sexton et al., 2004; Willemsen et al., 1997; Haley et al., 1989; van Vunakis et al., 1989).

The sensitivity and specificity of self-reports have been calculated with measures of different biomarkers as standards in smoker subjects (Dolcini et al., 2003). When the self-report items were compatible with the half-life of the biological indicator, and values were adjusted for smokeless tobacco use, sensitivity varied widely. The range for specificity was more constrained. The biological indicator examined and the time-frame of questions on smoking affected the sensitivity of self-report. The biological indicator examined and use of other tobacco products influenced the specificity of self-report. Overall, sensitivity and specificity were highest when recent smoking was assessed, when cotinine was the standard and smokeless tobacco use was considered.
In SHS exposure, self-reported measures show a good specificity but low sensitivity (Kemmeren et al, 1994), probably because of the difficulty of non-smoker subjects to identify sources, periods and amounts of exposure.

By way of conclusion, questionnaires provide useful information about SHS exposure and are relatively easy and inexpensive to obtain and analyse, even if they do require more accurate measures, such as biomarkers, in order to assure sensitivity and reliability. They are the only method that permits tracing of the exposure pattern in retrospective studies.
3. ENVIRONMENTAL MARKERS

The extent of exposure to SHS by environmental measures could be assessed by different ways. First, direct methods are represented by the use of personal monitors, which measure concentrations of SHS constituents at or near the breathing zone. They can be worn by individuals to assess exposure occurring at a specific location or accumulated throughout the day, thus providing an integrated measure of short-term exposure. They are often used in conjunction with biomarkers in order to compare or validate assessment of exposure. Indirect methods include measurements of indoor air concentrations of SHS constituents and the time that an individual spends in a specific environment. Models based on mass balance are another means of indirectly assessing SHS exposure. Although it has been argued that predictions derived from these models are too situation-specific to be generalized relating to the overall population (NCI, 1999), several recent studies have taken steps toward designing models with greater general applicability, thereby allowing even greater ability to predict population-wide patterns (Klepeis, 1999).

Given the complex chemical composition of SHS, air concentrations are typically assessed by measuring individual SHS constituents referred to as tracers or proxy compounds. Gas-phase (nicotine, carbon monoxide, volatile organic compounds, 3-ethenylpyridine, scopoletin) and solid-phase markers (particulate matter, solanesol) of SHS are currently used to monitor tobacco smoke pollution (Hodgson et al., 1996; Jenkins et al., 1996). Although at least one marker in each phase should be measured to describe adequately SHS load (Daisey, 1999), most of the field studies that have marked our present culture about SHS prevention have relied on single markers, which have
gained widespread reliability among researchers. Ambient SHS markers can be further sub-divided into specific (generated only by tobacco combustion) and non-specific (common to other kinds of combustion, but useful for SHS field studies).

Personal monitoring of relevant tobacco smoke components can be considered as the most direct method to assess SHS exposure. Personal monitoring measures the contact of an individual with different concentrations of a pollutant in the course of normal activities, using samplers worn for several hours to several days (NRC, 1986). Personal monitoring usually measures an integrated exposure across a variety of environments occupied by the person over time. Continuously recording instrumentation with data-logging capacity has also been developed. The samplers can be passive, working on the principle of diffusion, or active pumps, that collect and concentrate the air contaminant for further analysis or draw air through a direct-reading detector. There are severe limitations of personal monitoring methods to assess SHS exposure: first, they can only be used for relatively short time periods, and this time period during which monitoring is carried out may not be representative of an individual's normal activities in the long run. Moreover, they are currently not available for all components of SHS. Finally, they are time-consuming and expensive, and thus, may not be feasible in studies with large samples (Jaakkola and Jaakkola 1997).

Fixed location measurements of air concentrations of SHS constituents indicate the presence of SHS and allow an estimation of the contribution of SHS to indoor air contaminant levels, but do not constitute a direct measure of an individual's total SHS exposure. During the course of a single day, an individual spends varying amounts of time in a number of different environments; for that individual, the total exposure is the sum of the concentration at each location multiplied by the time spent at that location.
Further, for different individuals exposed to the same levels of SHS constituents in the same room, the actual dose will vary as a function of a number of factors, including gender, age, specific activity level and breathing rate at the time of exposure (NCI, 1999). Moreover, the measured concentrations of individual constituents in homes and other indoor environments show marked spatial and temporal variation as a result of the complex interaction of factors related to the introduction, removal and dispersion of SHS constituents. These factors include the rate of tobacco consumption, room size, the location at which smoking occurs, the placement of air monitors, the ventilation and infiltration rate, air mixing and removal of contaminants by air filters or deposition (NRC 1986). In order to provide a quantitative assessment of exposure, several variables should be taken into account, like the magnitude of the pollutant concentration and the duration and the time-specificity of exposure (Jaakkola and Jaakkola, 1997). If concentrations of a specified tobacco smoke component are measured in all microenvironments occupied by an individual and this information is combined with detailed time-activity information to assess total exposure of that individual, the stationary monitoring method approaches direct personal monitoring of exposure.

Subsequently, we present the principal environmental biomarkers used in previous studies in order to evaluate exposure to SHS.
3.1 Gas-phase markers

3.1.1 Nicotine in air

Vapour-phase nicotine is the most commonly measured indoor air indicator of SHS, and it is used both in personal sampling methods and in fixed-site indirect measurements (Nebot et al., 2005; Daisey, 1999; LaKind et al., 1999). Several other components have been studied as markers for SHS, but nicotine has been most widely used because its only source is tobacco smoke (Hammond et al., 1987).

Nicotine is emitted in the side-stream smoke particle phase and evaporates when it is diluted. It is suitable as an indicator of SHS, since it is specific to tobacco combustion and is emitted in large quantities in SHS (U.S. EPA 1992). Nicotine can be collected on a fibre back-up filter treated with sodium bisulphate and analysed by gas chromatography, which is a fairly simple and inexpensive method (Henderson et al., 1989; Hammond et al., 1987), and can also be measured by means of personal badge monitor (Nebot et al., 2005; LaKind et al., 1996; Phillips et al., 1996) or in indoor dust and household surfaces (Matt et al., 2004). Ambient nicotine measurement has been used to monitor SHS pollution in private buildings, public places, workplaces and transport facilities, to assess personal exposure, and to estimate the overall exposure of non-smokers to SHS.

In the case of air nicotine one must distinguish between exposed and non-exposed, and a clear dose-response relationship with number of cigarettes smoked and period of exposure (Özkaynak et al., 1996).

This kind of marker has been widely used for several years in many studies (NCI, 1999) with very similar methods, providing references about
Levels of exposure and estimates in different settings or different countries (Nebot et al, 2005; Hammond, 1999; Jenkins et al, 1996).

Levels of air nicotine, measured by fixed-site or personal methods, show a good correlation with memory-based proxy reports (O'Connor et al, 1995; Coghlin et al, 1989), particulate matter (Daisey, 1999; Leaderer and Hammond, 1991) and urinary or salivary cotinine (LaKind et al, 1999; Jenkins and Counts, 1999; Marbury et al, 1993; Henderson et al, 1989).

Measurements taken in a wide variety of indoor environments indicate that most average concentrations of nicotine range about 100-fold, from 0.3 to 30 µg/m³ (NCI, 1999), even if in some settings levels up to 500 µg/m³ have been found (Nebot et al, 2005).

A dose-response relationship was found between air nicotine and health effects in occupational settings, and specific models about levels, years of exposure, and risk of lung cancer have been carried out (Hammond et al, 1995; Repace and Lowrey, 1993).

A drawback of vapour phase nicotine as an SHS indicator is its high adsorption rate to indoor surfaces and a tendency to be re-emitted even in the absence of active smoking (Jaakkola and Jaakkola, 1997). This source of exposure (residual SHS when non-smoker is present after smoker finishes) accounted for a larger fraction of exposure for nicotine and other sorbing compounds versus non-sorbing SHS components. Indirect routes accounted for about 50 percent of potential nicotine exposure during the non-smoking periods (Singer et al, 2003). This property can change its concentration relative to other SHS constituents.

3.1.2 3-ethenylpyridine

Ambient nicotine was originally considered to be an ideal tracer for SHS concentrations because it is unique to tobacco plants. However, its chemical structure confers adsorptive tendencies and unpredictable decay rates. Thus
nicotine measurements may underestimate SHS because of adsorption on building materials and room furnishings, so that it can disappear from SHS at a faster rate than other components. Another property of nicotine is desorption from the surfaces where it deposited initially, causing a possible overestimation of SHS from the slow desorption of nicotine over time. The presence of ambient nicotine is a strong indication that smoking has occurred. However, it does not necessarily indicate the presence of other SHS components. The unpredictable decay characteristics of SHS nicotine can be addressed by providing for simultaneous determination of 3-ethenylpyridine (3-EP), the principal product of nicotine pyrolysis, by a gas chromatographic method (Vainiotalo et al, 2001). However, analytical standards for 3-EP are not as readily available as for nicotine. Several field studies have been carried out by measuring 3-EP along with ambient nicotine (Bi et al, 2005; Kim et al, 2001; Hyvarinen et al, 2000; Phillips et al, 1998). 3-EP bears optimal correlation and relatively constant relationship to the initial SHS nicotine concentration as well as the same uniqueness of source in indoor environments (LaKind et al, 1999). Unlike nicotine, 3-EP is more volatile and less adsorptive than nicotine, so that this marker has decay characteristics more representative than other SHS vapour phase constituents (Jenkins et al, 2000). However, some reports observed that in real world measurements 3-EP does not behave entirely as previously described in experimental chambers, especially when there are low ventilation levels (Bi et al, 2005; Scherer et al, 2000).

3.1.4 Myosmine

Myosmine is an alkaloid compound present in tobacco leaves. It is regarded as a specific marker of SHS, even though myosmine can also be found in nuts (U.S. EPA, 1992). Myosmine is easily nitrosated giving rise to DNA adducts. Even if myosmine shows a good correlation with nicotine
levels (LaKind et al, 1999), it is present only in 2-7% of the gas-phase nicotine concentration, and measurements of environmental exposure could sometimes be under the limit of detection (Benner et al, 1989). It is rarely used as an SHS marker.

3.1.5 Carbon monoxide (CO)

CO is a non-specific marker of combustion, very useful to monitor both outdoor and indoor air. It is a highly toxic poison, as CO has a strong reaction with hemoglobin to form carboxy-hemoglobin (COHb). The affinity of hemoglobin for CO is 200-250 times that for oxygen, so that this binding reduces the oxygen-carrying capacity of the blood and impairs the release of oxygen to extravascular tissues (Tomaszewski, 1999). COHb concentrations depend on CO level in inhaled air, duration of exposure and lung ventilation.

Cigarette smoking is a major source of indoor CO contamination. The CO yields of different brands of cigarettes have been studied for a long time, and were reported to increase with puff volume and tobacco moisture, and to decrease with increased paper porosity, with broad differences among the various brands (Calafat et al, 2004; Robinson and Forbes, 1975). Ambient CO measurements have been carried out often in association with other markers in many field studies to evaluate SHS pollution at home, at the workplace and in public places (De Bruin et al, 2004; Jo et al, 2004; Klepeis et al, 1999; Siegel, 1993). It should to be noted that it is quite common to find smoky places with CO levels above the 8-hour average concentration limit of 10 mg/m³ set for outdoor air (Akbar-Khanzadeh and Greco, 1996; Seppanen, 1977). Measuring CO with electrochemical analysers is affordable and reliable, but since CO is highly diffusible and many domestic and vehicular sources are possible sources of this gas, CO monitoring for SHS assessment should be carried out only together with other markers.
3.1.6 Volatile Organic Compounds (VOCs)

VOCs, such as benzene, styrene, formaldehyde, butadiene, acetone, toluene, ethyl benzene, xylene, N-nitrosamines and many other volatile compounds, constitute a major proportion of the organic mass of SHS, and many of the compounds in these fractions are known to be biologically active as carcinogens in animals.

There have been only a few field studies of the contribution of SHS to VOC exposure at the workplace and in the home (Kim et al, 2001; Daisey, 1999; Hodgson et al, 1996). In any case, it does not seem that these compounds could compete in sensitivity, laboratory techniques and user-friendly characteristics with the previous environmental markers.
3.2 Solid-phase markers

3.2.1 Scopoletin

Scopoletin (6-methoxy-7-hydroxy-coumarin) is another compound present in tobacco leaves, which has been identified as a possible particulate-associated SHS tracer molecule (Douce et al, 2001). Scopoletin is extracted into methanol from particulate material collected on Teflon impregnated glass fibre filters. Quantitative analysis can be achieved using reverse-phase liquid chromatography (RP-HPLC) and fluorescence detection (Risner, 1994). Some field studies have been carried out for scopoletin to trace SHS-specific particulates (Douce et al, 2001; LaKind et al, 1999).

3.2.2 Solanesol-PM

Solanesol is a naturally occurring terpene component in tobacco, present in the particulate phase of SHS. Due to this property, solanesol is also known as “SHS-specific particle” or “Sol-PM”, and can be measured using gas chromatographic techniques (Singer et al, 2002). It has been shown to be an important precursor of the carcinogenic polynuclear aromatic hydrocarbons of smoke (Severson et al, 1977). Due to its high molecular weight, solanesol is very involatile and is found entirely associated with the particulate emissions of SHS. Its primary use in SHS research was to calculate the fraction of SHS-derived particulates to total particulates present in ambient air, which has been found to be up to 92% (Daisey, 1999; Ogden and Maiolo, 1989). Several field studies have been carried out using solanesol-PM as a specific marker of SHS-derived particulates in association with other markers, confirming the high contribution of SHS to indoor particulate matter (Gee et al, 2005, Zhou et al, 2000).
As for its specificity, solanesol can be found in many plants of the Solanaceae family, to which the Nicotiana genus belongs. Other members of the family contain solanesol, like potato plants, tomato plants, pepper plants and aubergines. Therefore, certain cooking emissions represent sources of solanesol, other than SHS. However, this kind of interference is thought to be of only minor relevance (Ogden and Maiolo, 1989).

Indeed, solanesol is thought to degrade when exposed to ultraviolet light and hence would not be a good marker for SHS outdoors. Also, as solanesol air concentrations may be too low to measure (Jenkins et al, 2000), there is no steady correlation with other markers nor is it consistent across different tobacco products (LaKind et al, 1999).

3.2.3 Particulate matter (PM)

Particulate matter is defined as particles of solid and/or liquid nature of such dimensions and morphology as to remain suspended in the atmosphere for a certain time depending on their size, form, specific weight and air turbulence. Larger particles sediment quickly due to gravitational attraction, while smaller particles can remain suspended for hours and even days and can be transported very far from the generation point by winds and turbulences.

In contrast to nicotine, particulate matter is not specific to SHS and thus measurements in environments where smoking occurs must be compared to concentrations in comparable environments where smoking does not occur. Like nicotine, measured concentrations of SHS-associated particulate range about 100-fold, from 5 to 500 µg/m³, over a wide variety of indoor environments (NCI, 1999).

Outdoor particulate matter pollution measurements were consistently smaller than exposure by personal monitoring, indicating the strong influence of indoor environment on personal exposure (Spengler et al,
Correlations between home indoor particulate matter concentrations and personal exposure were high. SHS was a substantial contributor to personal exposure in indoor environments, the average personal particulate matter exposure being higher in subjects exposed to SHS, compared to those not exposed.

Although the PM is not a specific marker of SHS, the amount of pollution generated can be extremely high in indoor environments: pioneering works identified SHS as a major source of indoor air pollution, the greatest source of population exposure to respirable particulate air pollution (RSP), and developed equations for its prediction (Repace and Lowrey, 1980).

Particulate matter can be detected and measured by instruments using several different methods: gravimetric and optical to detect the mass or the number of particles, fluorescence (FPM) and ultraviolet (UVPM) adsorption to measure the particle bound hydrocarbons (U.S. EPA, 1992; NRC, 1986). These different measures show a good relationship in experimental conditions (Rando et al, 1992), but only a weak correlation in field studies (LaKind et al, 1999).

Measurements have shown concentrations of PM2.5 (class of particulate matter including particles with aerodynamic diameters up to 2.5 micrometers) and/or RSP (class of particulate matter including particles with aerodynamic diameters up to 3.5 micrometers) in the range of 10-20 or even more as the maximum allowed concentrations for outdoor pollution. Many field studies on SHS pollution have been carried out with PM determinations, both with stationary sampling (Bi et al, 2005; Invernizzi et al, 2002; Liu et al, 2001; Scherer et al, 1990) and with personal samplers (Georgiadis et al, 2001; Jenkins et al, 2001, 1996; LaKind et al, 1999; Phillips et al, 1998, 1996).

The novelty in PM monitoring is the availability of portable, user-friendly, affordable instruments capable of real-time monitoring (one measurement
every 1-5 minutes) (Invernizzi et al, 2002). These instruments allow multiple assessments of indoor air quality each day and are suited to check compliance with smoking policy rules. Moreover, the results of the measurements can be shared instantly with bartenders, patrons and customers, thus representing an educational opportunity. Real-time analysers can also compare outdoor and indoor air quality instantly, often a shocking experience for lay people who are accustomed to considering pollution mainly as an outdoor problem (Invernizzi et al, 2004). The principal drawback of this marker is its poor specificity to SHS: in order to collect reliable information about exposure, it could be useful to link PM measures with other specific markers.
4. Biomarkers

Personal monitoring of exposure and analysis of the respiratory environment make it possible to estimate the level of toxic agents for individuals exposed to SHS. On the other hand, studies on the uptake of smoke constituents by individuals and on the metabolic fate of such compounds can provide deeper information relative to epidemiological observations and the real exposure levels of different populations.

Exposure to SHS may depend on several factors, including the number of smokers in an enclosed area, the size and nature of the area, and the degree of ventilation. Moreover, the uptake depends on breathing rate, mouth versus nose breathing, airway geometry and other respiratory factors, and thus modifies the dose received by the human body (Jaakkola and Jaakkola 1997). Individual processes taking place after uptake, including metabolism and elimination of the compound, determine the biologically effective dose. Thus, optimal assessment of exposure should be done by analysing the physiological fluids of exposed persons, rather than by analysing the respiratory environment. The development of new biochemical methods allows us to obtain measurements of exposure to SHS by determining the uptake of specific agents in body fluids and calculating the risk relative to that of the exposure of active smokers. The uptake of individual agents from SHS can be determined by biochemical measures that have been developed to assess active smoking behaviour, as long as these measures are sensitive and specific enough to quantify exposure to such agents in non-smokers.

Biomarkers can be classified in three different categories: biomarkers of internal exposure, biomarkers estimating the biologically effective dose, and
biomarkers of potential harm (IOM, 2001). The latter two biomarkers report the consequences of exposure at the cellular level and can provide information about the effects of individual chemical components which enter the body due to tobacco smoke and from other sources (i.e. tobacco, diet, air) (Shields, 2002). Given the large number of available potential biomarkers, and the numerous ones under development with new technologies, a framework is needed to assess the importance of a biomarker. When developing new tests, it is often helpful to have complementary markers that can measure the same effect or a surrogate for the effect. Studies of any biomarker should include determination of the replicability (i.e., coefficient of variation), inter-laboratory variability, intra-individual variation, and inter-individual variation. Laboratories should have quality control and quality assurance procedures (Shields, 2002).

Biomarkers of exposure include any test of a body fluid (including exhaled air) or tissue that measures a constituent or constituent metabolite of tobacco smoke. It is not a measurement of how the constituents interact with body functions or macromolecules to cause harm.

The biologically effective dose represents the net effect of tobacco smoke constituents (single or complex) on a cellular macromolecule (e.g., protein or DNA) following metabolic activation to reactive intermediates, decreased rate of detoxification, decreased repair capacity, and decreased rates of cell death (Perera, 1987). A common way to assess the biologically effective dose is to measure carcinogen–DNA adducts. It reflects integrated measure of external exposure, smoking behaviour, metabolic activation, DNA repair capacity, cell cycle control, and apoptosis capacity. These experiments are generally challenging due to the technological limitations in measuring low levels in human tissues.

Biomarkers of potential harm can range from non-functional effects on cells that serve as surrogate markers for actual harm to pre-clinical and
clinical disease. These markers may reflect early biological and genetic effects, or alterations in morphology, structure, or function. These experiments are typically expensive, but new opportunities exist with newer technologies. Specificity for smoking exposure is usually not possible (Shields, 2002). As biomarkers of effective dose, these are best measured in target tissue but sometimes that tissue, or an adequate sample of it, is difficult to obtain.

Two broad questions must be taken into account in assessing the validity of a biomarker of tobacco smoke exposure. The first is how well does the concentration of a marker chemical in the air reflect exposure to toxic constituents of smoke that are of concern with respect to health; the second is how well does a concentration of a particular chemical in a biological fluid reflect an individual’s intake of that chemical (or a related chemical) from tobacco smoke (Benowitz, 1999)?

Criteria for a valid marker of SHS in the air have been proposed (NRC, 1986). First, the marker should be unique or nearly unique for SHS so that other sources are minor in comparison. Then, it should be easily detectable and emitted at similar rates for a variety of tobacco products. Finally, it should have a fairly constant ratio to other SHS components of interest under a range of environmental conditions encountered. On the other hand, the validity of a biomarker depends on the accuracy of the biologic fluid measurement in quantifying the intake of the marker chemical, which in turn may be influenced by individual differences in rates or patterns of metabolism or excretion, the presence of other sources (such as diet) of the chemical, and sensitivity and specificity of the analytic methods used (NCI, 1999). Other issues of interest in assessing the risks of exposure to SHS are how well the biomarker indicates long-term exposure to SHS as well as whether a biomarker predicts the likelihood of SHS-related disease.
Genetic variations of xenobiotic metabolism are currently widely studied and largely applied as markers of susceptibility in molecular epidemiology studies on cancer (Vineis et al., 1999; Perera, 1997). As a reflection of such variation in biotransformation, also levels of many biomarkers may be affected in the exposed persons. Even if many studies have been carried out about the role of polymorphisms in tobacco product metabolisms, especially cytochrome P-450 and glutathione-S-transferase genes (Perera et al., 2002; Hecht et al., 2002; Smith GB et al., 2001; Heudorf and Angerer, 2001), the influence of genetic factors is to be estimated in the long run. Thus, confounding and modification effects using biomarkers cannot be ruled out. Overall, it appears that although a number of markers may reflect exposure to particular components of tobacco smoke in active smokers, most of the measures are too non-specific (i.e. high baseline values even in non-exposed non-smokers or environmental sources other than tobacco smoke) and/or insensitive (i.e., the increment due to SHS exposure is small compared to baseline values) for use in quantification of levels of smoke exposure to which most non-smokers are exposed.

The principal non-carcinogenic biomarkers used in exposure assessment studies are presented in the following.
4.1 Non carcinogenic biomarkers

4.1.1 Cotinine

The advantages of nicotine and cotinine in body fluids as biomarkers of SHS include their relatively high sensitivity and specificity for tobacco combustion and the availability of accurate measurement methods at low concentrations (U.S. EPA, 1992).

Seventy-five percent or more of the nicotine that is emitted from a cigarette is emitted into the air as side-stream smoke, which contributes substantially to SHS (NRC, 1986); on average, 70-80% of adsorbed nicotine is converted into cotinine, which is transformed to a high degree into other metabolites (Benowitz and Jacob, 1993). Cotinine in urine or in saliva is the most widely used biomarker of tobacco exposure, and the ability to measure the exposure to SHS, with a clear dose-response relationship, is undoubted (Husgafvel-Pursiainen, 2002; Jaakkola and Jaakkola, 1997; Benowitz, 1996). Levels in urine or saliva are highly correlated with blood specimens (Benowitz, 1996), and they are preferred because of their easier collection. The average half-life of cotinine in different body fluids (plasma, saliva and urine) is about the same, approximately 15 to 19 hours (Jarvis et al, 1988; Benowitz and Jacob, 1994), making it a good indicator of the integrated SHS exposure over the previous two to three days. The half-life is typically longer in infants and children, averaging approximately 65 hours in neonates, 60 hours in infants less than 18 months, and 40 hours in children over 18 months (U.S. EPA, 1992).

Nicotine measured in body fluids is not considered a good biomarker, considering that its half-life averages only 2-3 hours, compared to the 17
hours of cotinine, which, moreover, remains relatively constant throughout the day (Benowitz and Jacob, 1993).

Despite large cotinine utilization, some aspects should be taken into account. The low half-life of this biomarker makes it useful only for assessing short-term exposure. Besides, urinary cotinine shows a high inter-individual variability in conversion from nicotine (usual range 55-92 percent), depending on renal function, urinary flow rate, and urinary pH (Benowitz and Jacob, 1993). Urinary results may be expressed as nanograms of cotinine per milligram of creatinine in order to compensate, in part, for differences in dilution effects. Because the amount of endogenous creatinine produced is a function of muscle mass, age, sex and inter-individual excretion rates of creatinine are also variable. In particular, cotinine/creatinine ratios may not be appropriate for comparisons between males and females. In addition, low levels of creatinine in infants compared to adults may result in cotinine to creatinine ratios for infants that fall into the range reported for active smokers (Watts et al., 1990). In general, it is preferable to collect urine over 24 hours, although is impracticable for most studies. Nevertheless, levels in large groups of subjects would be expected to accurately reflect average group exposure to SHS.

In general, the presence of nicotine or its metabolites in physiological fluids can be attributed only to exposure to tobacco smoke. The few exceptions include occupational exposure to tobacco leaves (Gehlback et al., 1975) and nicotine products, use of smokeless tobacco products, chewing of nicotine gum, and use of nicotine patches or other aids for smoking cessation. Low levels of nicotine have been found in tea and in edible solanaceous plants including aubergines, green peppers and tomatoes (Sheen, 1988; Davis et al., 1991; Domino et al., 1993). While some authors have claimed that dietary intake of nicotine may be of practical importance in the use of nicotine and cotinine as biomarkers of SHS exposure (Domino
et al, 1993), others dispute this assertion (Jarvis, 1994; Repace, 1994; Benowitz, 1996; Pirkle et al, 1996). In general, the levels of nicotine and its metabolites in physiological fluids resulting from the ingestion of foods has not been found to significantly impact the levels resulting from exposure to nicotine from tobacco sources.

Many studies are available which report concentrations of cotinine in the physiological fluids of smokers and non-smokers (NCI, 1999). The levels of SHS encountered by exposed non-smokers during their daily activities are sufficiently high for nicotine and cotinine to be detected in their urine, blood and saliva. The physiological concentrations of cotinine detected in saliva and plasma of non-smokers typically range from 0.5 ng/ml to 10 or 15 ng/ml (U.S. EPA, 1992; Guerin et al, 1992), and urinary concentrations range to 50 or more ng/ml. However, it is important to realize that some of the differences in cotinine levels reported here could be explained by the different analytical methods used. Thus, in comparing cotinine levels reported in various studies, it is important to consider the analytical method employed and what components were being measured. There are two methods to detect cotinine and nicotine in biological specimens: gas chromatography (GC) and radioimmunoassay (RIA). Both techniques reliably gauge nicotine and cotinine in urine and serum samples and are capable of discriminating between smokers and non-smokers (NCI, 1999).

A significant correlation was found between cotinine levels and acute biologic effects of SHS, as middle ear effusion (Strachan et al, 1989) and wheezing bronchitis (Rylander et al, 1995) in children, or coronary heart disease (Whincup et al, 2004; Tunstall-Pedoe et al, 1995). Other studies, reported that SHS measured by cotinine has been correlated to adverse effects on foetal growth as well as child growth and development (Perera, Tang et al, 2004; Yolton et al, 2005; Eskenazi et al, 1995; NRC, 1986). This
Measures of cotinine in biologic fluid have been widely used to enhance the reliability of questionnaire-derived assessments of SHS exposure. Several studies show a weak correlation between self-reported exposure and cotinine levels, even in distinguishing exposed and unexposed (Emmons et al, 1994; Kemmeren et al, 1994; Delfino et al, 1993; Coultas et al, 1990; Haley et al, 1989). Stronger relations between ambient air nicotine and urinary or salivary cotinine levels of non-smokers have been reported (Jenkins and Counts, 1999; Matt et al, 1999; Marbury et al, 1993; Henderson et al, 1989). Those findings emphasize that the validation of exposure status with a biomarker is an essential prerequisite for epidemiological studies investigating passive smoking.

4.1.2 Nicotine and cotinine in hair

Levels of nicotine or cotinine in hair have been suggested as a possible marker of long-term smoke exposure, and a review of the findings about their uses has recently been carried out (Al-Delaimy, 2002). The main advantage in using markers from hair is that, unlike other biomarkers, they can provide information about long-term (up to several months) SHS exposure. Moreover, they facilitate differentiation of the exposure in the different periods of the past months, using hair as a “tape-recorder” and distinguishing the parts by the distance from the proximal end (Uematsu, 1993).

Contrary to the urine specimens, nicotine in hair seems to be a more suitable SHS marker than cotinine. In fact, the latter is present in much lower concentrations than the former (Chetiyakanorkkul et al, 2004; Klein et al, 2004), probably for the different incorporation rate into hair given by cotinine metabolism. For this reason, the detection of SHS exposure is
hardly reduced, thus explaining the poor correlation of cotinine levels to history of exposure among non-smokers (Al-Delaimy et al, 2000; Dimich-Ward et al, 1997; Nafstad et al, 1995).

Several studies have compared the self-reported SHS exposure with nicotine levels in hair and found significant associations, high sensitivity, steady exposure-dose ratio and good reproducibility over time (Al-Delaimy, 2002; Al-Delaimy et al, 2001, 2000; Dimich-Ward et al, 1997; Nafstad et al, 97, 95; Pichini et al, 1997; Eliopoulos et al, 1994; Zahlsen and Nielsen, 1994). Nicotine in hair was used as a quantitative marker to predict the health effect of SHS during pregnancy: increased risks of small-for-gestational age at birth and pre-term delivery have been demonstrated (Jaakkola et al, 2001; Nafstad et al, 1998).

Even if average nicotine in hair is less vulnerable to everyday variability of exposure, metabolism or elimination than other biomarkers, some confounding factors should be taken into account. Some authors suggest that a considerable amount of nicotine could originate from direct adsorption from environmental air (Nilsen and Nilsen, 1997; Nielsen and Zahlsen, 1994), but this route is probably secondary to the main one of systemic circulation and does not seem to affect the assessment of SHS exposure (Al-Delaimy et al, 2002). Cosmetics and other treatments, but not normal washing, may affect nicotine levels in hair (Pichini et al, 1997; Li and Cheng, 1993). Several investigations have reported that white, grey or fair hair has lower nicotine levels than black hair with similar exposure (Mizuno et al, 1993; Uematsu et al, 1995), maybe due to the high affinity of nicotine for melanin.

In a recent survey that compares urine cotinine and hair nicotine as biomarkers for SHS exposure (Al-Delaimy et al, 2002), the latter was found to have greater precision and accuracy, due to the lower variability of long-term exposure, and fewer sources of bias.
4.1.3 Carbon monoxide and carboxyhemoglobin

Carbon monoxide, both in exhaled alveolar air and as carboxyhemoglobin in blood, originates from endogenous processes as well as from environmental sources. In addition to cigarette smoke, common environmental sources include vehicle exhaust, gas stoves and furnaces and kerosene space heaters. Although carbon monoxide and carboxyhemoglobin have been used to distinguish smokers from non-smokers (Ohlin et al, 1976; Sillett et al, 1978; Jarvis et al, 1983, 1987), they are generally not good indicators of SHS exposure because they lack sensitivity and specificity. In non-smokers exposed to environments with heavy SHS pollution, elevated levels of exhaled carbon monoxide and carboxyhemoglobin in the blood were detected when measured within 30 minutes following cessation of exposure. However, several studies of more typical exposure situations did not find significant differences in the carboxyhemoglobin levels in subjects reporting no, low, or high levels of SHS exposure (Jarvis and Russell, 1984; Jarvis et al, 1983). It does not appear that carbon monoxide and carboxyhemoglobin could represent high-quality markers in SHS exposure assessment.

4.1.4 Thiocyanate

Present in the vapour phase of tobacco smoke, hydrogen cyanide is metabolised in the liver, yielding thiocyanate (SCN-). Thiocyanate levels in blood, urine and saliva have been used to distinguish smokers from non-smokers, or, in combination with tests for nicotine or cotinine, to distinguish smokers from individuals using smokeless tobacco or other nicotine-containing products (Jarvis et al, 1987; U.S. DHHS, 1986; Hauth et al, 1984; Haley et al, 1983). Sources of thiocyanate are also present in the diet, particularly cruciferous vegetables (Haley et al, 1983); thus, levels of
thiocyanate in body fluids are not specific to exposure to tobacco smoke. In studies examining the use of thiocyanate as a biomarker of SHS exposure, it was not possible to distinguish between SHS-exposed and unexposed non-smokers (Hauth et al, 1984; Jarvis and Russell, 1984). For this reason, thiocyanate is not very useful as a biomarker of SHS and has not been widely used for monitoring SHS exposure.
4.2 Carcinogenic biomarkers

According to the International Agency for Research on Cancer, tobacco smoke contains over 60 constituents for which there is sufficient evidence of carcinogenicity in either laboratory animals or humans (Hoffmann et al., 2001; IARC, 1986). These are included in both active and passive smoke, albeit in different concentrations: the carcinogenic mechanism is presumed to be the same. Considering the high number of carcinogenic products present in tobacco smoke and the lack in knowledge about the molecular and physiological features that link exposure and disease, it is almost impossible to describe a single and detailed carcinogenic mechanism. In spite of this fact, general principles have come to light from intensive research in the course of the past decades.

Most SHS constituents require metabolic activation to exert their carcinogenic effects, binding to DNA strands and forming permanent adducts that can lead to miscoding and mutations. This binding is critical in the carcinogenic process (Hecht, 2003). These adducts can be removed by repair mechanisms and, if repair does not occur, cells can be forced to apoptosis. When mutations involve critical genes such as oncogenes or suppressor genes, the cell loses its normal behaviour and the cancer process starts.

For a correct assessment of the carcinogenic risk, it is important to consider that the competition of detoxification/excretion and activation mechanisms and the repair and apoptosis processes can present a high degree of inter-individual variations, determining different susceptibility to SHS exposure.
Carcinogen-derived biomarkers used to estimate the exposure are formed during the steps illustrated above. Therefore, their use even provides information about the carcinogenic process, from exposure to disease (Shields, 2002).

Biomarkers reviewed here concern different stages of this process: most of them are carcinogens or their metabolites measured in urine specimens, or DNA or protein (hemoglobin) adducts measured in blood cells.

The first group includes biomarkers of exposure, used to quantify the internal dose, even if, as we said, their measurement is affected by individual variations given by metabolic features.

DNA adducts are typical biomarkers of effective dose, and provide an integrated measure of external exposure, metabolic activation, repair capacity and cell cycle control (Shields, 2002). A protein adduct, such as hemoglobin, and to a lesser extent albumin is used as a surrogate for DNA adducts because the two parameters tend to correlate. Moreover, it is easier to collect them in large quantities and they are not subject to enzymatic repair (Hecht, 2003).

Many studies used different biomarkers in order to relate the SHS exposure with potential carcinogenic damage. These include antioxidants and metabolites related to genetic harm.

The principal groups of carcinogen-derived biomarkers used to assess exposure to environmental tobacco smoke are presented hereafter. Some studies on active smoke have been considered in order to evaluate the feasibility of each biomarker.

4.2.1 Polycyclic aromatic hydrocarbons (PAH)

This group of compounds is formed during incomplete combustion of organic matter. PAHs are found in tobacco smoke, and their contribution to the carcinogenic activity of cigarette smoke has been clearly established.
(IARC, 1986). Among this class, benzo[a]pyrene (BaP) is the most extensively studied compound, and its ability to induce lung tumours in laboratory animals is well documented (Culp et al, 1994; IARC, 1983; IARC, vol. 3, 1972).

Airborne PAHs result mainly from the combustion of fossil fuels, tobacco products and other organic materials. Generally, emissions from motor vehicles and residential heating are the major source of PAHs in urban air, whereas SHS is a major indoor source (Perera, Rauh et al, 2004). This class of compounds cannot provide specific biomarkers to evaluate the exposure to SHS, because other prominent sources, such as traffic or occupational exposure, have to be considered.

1-Hydroxypyrene and hydroxy-phenanthrene are urinary metabolites widely used as biomarkers of PAH uptake. Although the parent compounds, pyrene and phenanthrene respectively, are non-carcinogenic, they represent surrogates of total PAH exposure. Despite the positive results in studies to assess the exposure in active smokers (Hecht et al, 2004; Hecht et al, 2002) and some works that reported significantly higher values in people exposed to SHS (Tsai et al, 2003), levels of 1-hydroxypyrene and hydroxy-phenanthrene do not seem to be increased by exposure to SHS (Saieva et al, 2003; Scherer et al, 2000; Siwinska et al, 1999; Van Rooij et al, 1994; Hoepfner et al, 1987). Other factors, such as environmental and occupational exposure or diet, seem to be more significant contributors of the concentration of these compounds in urine.

Prior evaluations of the effects of SHS exposure using PAHs-DNA adducts are limited and most of them show weak correlation (Georgiadis et al, 2001) or no correlation (Perera, Rauh et al, 2004; Scherer et al, 1992).

Metabolites of BaP and other PAHs adducts with albumin or hemoglobin are used more frequently. Some studies show an increment in the levels of these markers (Tang et al, 1999; Crawford et al, 1994), while other authors
do not find any significant differences (Scherer et al, 2000; Nielsen et al, 1996; Autrup et al, 1995). It is noteworthy that several different methods were used to measure the blood samples and, in some cases, values are very close to the limit of detection: this fact could explain the different results.

Finally, it does not appear that measurements of urinary metabolites or adducts of PAHs may represent a valid instrument in SHS exposure assessment, because of their low specificity and insufficient detection limit.

4.2.2 Aromatic amines

Aromatic amines were first identified as carcinogens in studies on occupational exposure. They cause tumours at a variety of sites in laboratory animals, and 2-naphtylamine and 4-aminobiphenyl are well-established human bladder carcinogens (IARC, 1973; IARC, vol. 1, 1972).

Hemoglobin adduct of 4-aminobiphenyl (ABP-Hb) is frequently used as a biomarker in SHS exposure studies. Most of them show that ABP-Hb is significantly associated with SHS, with higher values present in children (Baier et al, 2002; Tang et al, 1999), pregnant women (Hammond et al, 1993) or exposed volunteers (Bartsch et al, 1990; Maclure et al, 1989). By contrast, other studies showed no significant relationship between SHS exposure and adduct level (Airoldi et al, 2005; Richter et al, 2001; Branner et al, 1998). On the other hand, it seems that other exposure sources, like diesel exhaust, could provide a background level of aromatic amines in SHS unexposed human. Therefore, ABP-Hb could represent only an aspecific exposure indicator in SHS exposure assessment.

4.2.3 N-nitrosamines

N-nitrosamines are a large group of carcinogens, which induce cancer in a wide variety of species and tissues (IARC, 1973; IARC, vol. 1, 1972). They
are present in low concentrations in food and could be formed endogenously from amines and nitrogen oxides (Hecht, 2003).

4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific nitrosamine, is a systemic lung carcinogen. NNK is the most prevalent systemic lung carcinogen in tobacco products (Hoffmann et al, 2001; Hecht, 1999) and the only one that induces tumours systemically in rats, mice and hamsters irrespective of the route of administration (Hecht, 1998). A prominent feature of this compound is that it can be found only in tobacco products, but not in the diet or as a rule in the environment unless tobacco smoke pollution is present: its adducts or metabolites should be used as absolutely specific biomarkers of tobacco exposure.

Hemoglobin adducts of NNK and N'-nitrosonornicotine (NNN) can be hydrolysed to release 4-hydroxy-1-(3-pyridyl)-1-butanone (HBP). Even in active smokers, urinary levels of HPB are lower compared to hemoglobin adducts of other carcinogen (Atawody et al, 1998; Hecht et al, 1994; Carmella et al, 1990). It is also unlikely to find positive results in SHS exposure studies, as already reported (Branner et al, 1998).

Urinary metabolites of NNK, 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronide (NNAL-Gluc) are excellent biomarkers of human uptake of this carcinogen (Hecht, 1999; Hecht, 1998). Several studies establish a positive significant correlation between SHS exposure and NNAL and NNAL-Gluc levels, in school-aged children exposed by parents (Sexton et al, 2004; Hecht and Carmella, 2001), in women exposed by spouses (Anderson et al, 2001), in occupational environment (Anderson et al, 2003; Parsons et al, 1998), and in amniotic fluid of foetuses exposed by mothers (Milunsky et al, 2000). Levels of NNK metabolites were often tested together with other markers used in exposure assessment of active smoke or SHS: positive correlations were established first with cotinine (Sexton et al, 2004; Anderson et al, 2003, 2001; Hecht, 2003), but also with urinary
nicotine (Anderson et al, 2001; Hecht, 1999) and anabrine (Murphy et al, 2004). Some studies assessed the decrease of NNAL and NNAL-Gluc levels with tobacco use cessation or reduction (Hecht et al, 2002; Hecht, 2003, 1999) reporting significantly lower levels of urinary metabolites, but for most smokers, reductions were modest and transient, and slower than cotinine decrease.

The decay of NNAL and NNAL-Gluc from urine is slow after smoking cessation (average half-life 3–4 days) compared with the rapid disappearance of total cotinine (Hecht, 1999). Therefore, the probability of detecting NNAL or NNAL-Gluc after a given exposure to tobacco smoke may be greater than that of detecting cotinine.

These results suggest that there is a receptor for NNAL in the human body, possibly in the lung, that affects the urinary release of this carcinogen. This fact could be important using NNK metabolites as exposure biomarkers.

The previous studies show relatively wide variations of NNAL and NNAL-Gluc in exposed people. These wide ranges may have important implications for interpretation of epidemiological studies of exposure to SHS and should be taken into account in the assessment of health risks.

4.2.4 Benzene

Benzene is a volatile hydrocarbon that occurs in considerable quantities in tobacco smoke, and its capability of causing leukaemia in humans is well established (IARC, 1982; Seniori Costantini et al, 2003).

Trans, trans-muconic acid (ttMA) was identified as a urinary metabolite of benzene at the beginning of this century, and recently its application as a biomarker for benzene exposure has been investigated. The range of metabolic conversion of benzene to ttMA is about 2-25% and is dependent on the benzene exposure level, simultaneous exposure to toluene, and probably also to genetic factors (Scherer et al, 1998). Even if some studies
found somewhat higher values in SHS exposure (Yu and Weisel, 1996; Carrer et al, 2000) or in definite sub-cohorts of exposed subjects (Weaver et al, 1996; Wallace et al, 1987), many authors reported non-significant results (Saieva et al, 2003; Scherer et al, 1999, 1995; Ruppert et al, 1997). Interpretation of these findings is complicated by the considerable differences in excretion rates (Yu and Weisel, 1996) and the amount of tMA given by metabolism of sorbate from diet (Weaver et al, 2000; Scherer et al, 1998). This may indicate that, unlike the situation with smokers who receive a substantial benzene dose from mainstream smoke, SHS makes a smaller contribution to urinary tMA in comparison with other exposure sources.

4.2.5 Others

Several other less specific markers have been examined in studies of SHS exposure.

A study found an inverse correlation between exposure to SHS from husbands who smoke and plasma levels of antioxidant vitamins (β-carotene, retinol, L-ascorbic acid and α-Tocopherol) among non-smoking women (Farchi et al, 2001).

Hemoglobin adducts of ethylene oxide (N-2-hydroxyethylvaline) have been used as a biomarker of exposure to SHS. There was no difference in levels of these adducts between non-smokers who did not live or work with a smoker compared to those who did (Wu et al, 2004; Bono et al, 1999).

Some authors looked for an association between passive smoke and markers of genetic damage. Unfortunately, these biomarkers show a very low specificity for SHS, as they can be generated by the exposure to any carcinogen: for this reason, it is very difficult to predict all the possible sources and the weight of SHS contribution.

8-Hydroxydeoxyguanosine (8-OH-dG) is widely used as biomarker of oxidative damage to DNA. Some studies show a significant difference for
SHS exposure (Hong et al, 2001; Howard et al, 1998), while others do not (Smith CJ et al, 2001; van Zeeland et al, 1999; Daube et al, 1997). One of these studies (Hong et al, 2001) also establishes a positive relationship between 8-OH-dG level in neonatal urine and maternal genotype, confirming the strong influence of genetic susceptibility in carcinogen excretion.

32P-postlabelling is a technique that can estimate levels of hydrophobic DNA adducts. Significant differences between SHS-exposed and non-exposed have been found only in specific sub-groups (Georgiadis et al, 2001) or in induced sputum, but not in blood (Besaratinia et al, 2002), while other studies did not discover any effects (Daube et al, 1997; Binkova et al, 1995; Holz et al, 1990).

Other biomarkers, like urinary 3-ethyladenine (Kopplin et al, 1995), metabolites of mercapturic acid (Scherer et al, 1992), thioethers (Scherer et al, 1996, 92), urinary mutagenicity (Smith et al, 2000, Scherer et al, 1992) or epigenetic mutations (Husgafvel-Pursiainen, 2004; Georgiadis et al, 2004) have been assessed, but they demonstrated only a weak correlation or no correlation with SHS exposure.

The evaluation of the genotoxicity of urine in non-smokers with SHS exposure must consider the possibility of confounding effects, because DNA modifiers may be present in urine as a consequence of dietary intake or as a secondary result of the activity of infectious agents in the urine of the host. Nevertheless, urinary constituents may be DNA modifiers, because the inhaled agents are known or suspected mutagens or because the inhaled agents lead to the formation of such biologically active compounds.

Since 1975, the most widely used test for genotoxicity of human urine is the determination of mutagenicity in bacterial-tested strains with and without activation by enzyme-induced liver homogenate. Many studies have reported an association of urinary mutagens that are active in bacterial tester strains with cigarette smoking (IARC, 1986), but not all results from
these studies have been consistent. One reason for the divergent findings could be the influence of dietary factors on the mutagens in the urine of smokers (Sasson et al, 1985) and, perhaps also, non-smokers exposed to SHS.
5. CONCLUSION

The properties of SHS markers, and the results of the studies they are used in, could be useful in choosing suitable methods in specific situations. As we have demonstrated above, every marker has different features, and the choice depends on multiple factors, as outcomes of interest, degree of precision required, time-span of exposure, size and characteristics of populations studied and economic resources.

An evaluation of the markers discussed in this paper, which provide useful results concerning SHS exposure, is summarized in Table 2.

The type of exposure assessment needed for public health studies aiming to describe the distribution of exposure in populations over time differs from that required for health effect studies focusing on specific relations between SHS exposure and different health outcomes. For the latter, exposure assessment also differs depending on whether the aim is qualitative testing for an association between exposure and a health outcome, or quantitative estimation of effects of given exposure levels. Extensive study samples with less precise exposure estimates are usually preferable for qualitative studies, whereas accuracy and precision of exposure estimates are more relevant in quantitative studies (Jaakkola and Jaakkola, 1997).

Questionnaires are always recommended in order to collect information about characteristics of the population sample that could affect exposure to SHS. Moreover, this is the only feasible method that allows tracing of past exposures. Questionnaires provide useful information in studies of health outcomes with a long latency period and for studies of rare diseases requiring large study populations. However, memory-based reports should be linked with more specific markers, usually biomarkers, in order to verify
the real exposure and to prevent misclassification. These questionnaires should be designed according to the characteristics of the marker used as validation, such as the time span that it covers and the specific setting interested by exposure.

Personal monitoring of environmental markers provides good information on cumulative exposure over relatively short periods. Moreover, it provides information about individual exposure, and personal characteristics can be taken into account. Despite these advantages, these methods require heavy expense of resources, as they are expensive and time-consuming. However, they are the best approach to assess personal exposure in studies of the short-term health effects with small study samples, especially if quantitative assessment of exposure-response relation is desired.

In recent years, several biochemical methods used to measure SHS exposure have been developed. Thus, the use of biomarkers, even in exposure assessment field studies, is on the increase. Nevertheless, a majority of these new tests shows large variability in individual exposure, and our knowledge about the complex mechanisms that link exposure to health effects, such as uptake, metabolism and genetic susceptibility, should be improved. Biomarkers can add new and interesting information, in spite of high costs and sampling difficulties. Their use, depending on the study’s resources, is recommended in association with complementary markers that assure the validity and reliability of measurements.

Stationary monitoring of pollutant concentrations characterizes reasonably well exposure levels in different microenvironments over time, and is suitable for overall monitoring of the presence and amount of SHS in different indoor environments. Such an approach is often suitable for the purposes of risk assessment, development of preventive strategies, and follow-up of effectiveness of risk management measures, taking into account the relatively low cost and relative ease of sampling. When combined with
time-activity data, stationary monitoring can also be used to assess an individual’s exposure in studies of the relatively short-term health effects.

As already stated, the majority of markers used in SHS exposure assessment derives from previous studies on active smoke. Consequently, their levels due to SHS exposure and the related health effects are dramatically lower. Therefore, the use of specific markers is strictly recommended. Many aspecific markers, like several carcinogenic biomarkers, should be employed only in combination with more specific methods, in order to define the link between the degree of exposure and specific health effects. It is important to make a special effort to enhance the correlation between the methods, like decreasing non-SHS sources and choosing suitable markers to be measured together.

In this respect, a combination of different assessment methods is often the best alternative, if the resources are available. It is important to choose a set of markers that provides an exhaustive scenario, covering every relevant aspect of the exposure to SHS: it should be possible to fill in the gap for the others, and their results should be comparable.
Tables

Table 1. Effects associated with exposure to environmental tobacco smoke

Effects Causally Associated with SHS Exposure

Developmental effects
Foetal growth: Low birth weight and decrease in birth weight, and pre-term delivery
Sudden Infant Death Syndrome (SIDS)

Respiratory effects
Acute lower respiratory tract infections in children (e.g., bronchitis and pneumonia)
Asthma induction and exacerbation in children and adults
Chronic respiratory symptoms in children
Eye and nasal irritation in adults
Middle ear infections in children

Carcinogenic effects
Lung cancer
Nasal sinus cancer
Breast cancer

Cardiovascular effects
Heart disease mortality
Acute and chronic coronary heart disease morbidity
Altered vascular properties

Effects with Suggestive Evidence of a Causal Association with SHS Exposure

Reproductive and developmental effects
Spontaneous abortion, IUGR
Adverse impact on cognition and behaviour
Allergic sensitisation
Decreased pulmonary function growth
Adverse effects on fertility or fecundability
Menstrual cycle disorders

Cardiovascular and hematological effects
Elevated risk of stroke in adults

Respiratory effects
Exacerbation of cystic fibrosis
Chronic respiratory symptoms in adults

Table 2. Summary of properties of SHS exposure markers

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity to SHS</th>
<th>Duration after exposure reflected</th>
<th>Sampling and lab qualities</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Questionnaires</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>ENVIRONMENTAL MARKERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotine in air</td>
<td>+++</td>
<td>+++</td>
<td>0</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>3- ethenylpyridine</td>
<td>+++</td>
<td>+++</td>
<td>0</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Myosmine</td>
<td>+</td>
<td>+++</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>VOCs</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CO in air</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Scopoletin</td>
<td>+</td>
<td>+++</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Solanesol</td>
<td>+</td>
<td>+++</td>
<td>0</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>PM</td>
<td>+++</td>
<td>0</td>
<td>0</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>BIOMARKERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cotinine</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Hair nicotine</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>CO and CO-Hb</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Thiocyanate</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>PAHs in urine</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PAH adducts</td>
<td>+</td>
<td>0</td>
<td>++</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>ABP-Hb</td>
<td>+</td>
<td>0</td>
<td>++</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>NNAL</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>tt-MA</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Scores: “+++” excellent; “++” good; “+” poor; “o” none
“Sensitivity” refers to the ability to provide reliable measures of low SHS exposure and the same values at a constant level of exposure.

“Specificity to SHS” is self-explanatory.

“Duration after exposure reflected” refers to the time-span of exposure covered by the marker.

“Sampling and lab qualities” informs about features of laboratory techniques (sensibility, reproducibility), cost and ease of sampling.

“References” refers to knowledge about the method’s properties, and its use in previous comparable studies.
REFERENCES

36. De Bruin YB, Carrer P, Jantunen M, Hanninen O, Di Marco GS, Kephalopoulos S, Cavallo D, Maroni M. Personal carbon monoxide exposure levels: contribution of local sources to exposures and

85. IARC (International Agency for Research on Cancer). Polynuclear aromatic compounds, part 1. Chemical, environmental, and experimental data. IARC Monographs on the evaluation of the

98. Jenkins RA, Palausky A, Counts RW, Bayne C.K, Dindal AB, Guerin MR. Exposure to environmental tobacco smoke in sixteen cities in the

This project has been supported by the European Commission © ENSP Publications November 2005

68